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1 INTRODUCTION 

 
There is currently a great deal of interest in the use of polarimetry for radar remote sensing. In this context, 
different and important objectives are to classify Earth terrain components within a fully polarimetric SAR 
image and then extract physical information from the observed scattering of microwaves by surface and 
volume structures. The most important observable measured by such radar systems is the 3x3-coherency 
matrix [T]. This matrix accounts for local variations in the scattering matrix and is the lowest order operator 
suitable to extract polarimetric parameters for distributed scatterers in the presence of additive (system) 
and/or multiplicative (speckle) noise. In the first part of this paper, the most important Target Polarimetry 
descriptors: Sinclair Matrix, target vectors, coherency matrix and the covariance matrix as well are 
presented, their interconnections and equivalences will be shown together with the respective 
transformations. 
Speckle appearing in synthetic aperture radar (SAR) images is due to the coherent interference of waves 
reflected from many elementary scatterers and causes degradation and makes automatic image segmentation 
and scene description difficult. The speckle reduction problem is more complicated for polarimetric SAR 
than a single polarization SAR, because of the difficulties of preserving polarimetric properties and of 
dealing with the cross-product terms. The first part of this paper is ended by a presentation and a description 
of polarimetric speckle filters preserving polarimetric properties and statistical correlation between channels, 
not introducing crosstalk, and not degrading the image quality. The impact of using this polarimetric speckle 
filtering on terrain classification is quite dramatic in boosting classification performance.  
Many targets of interest in radar remote sensing require a multivariate statistical description due to the 
combination of coherent speckle noise and random vector scattering effects from surface and volume. For 
such targets, it is of interest to generate the concept of an average or dominant scattering mechanism for the 
purposes of classification or inversion of scattering data. Target Decomposition theorems are aimed at 
providing such an interpretation based on sensible physical constraints such as the average target being 
invariant to changes in wave polarization basis. Among the existing Polarimetric Target Decomposition 
theorems - coherent (Krogager, Cameron ...), non-coherent (Huynen, Barnes ...) model-based decomposition 
(Freeman) or eigenvector-based decomposition (Cloude, Van Zyl) - the H/A/α Decomposition Theorem, 
proposed by S.R. Cloude and E. Pottier in 1997 for extracting average parameters from experimental data is 
presented and discussed. Based on an eigenvalues analysis of the coherency matrix, this decomposition 
theorem employs a 3-level Bernoulli statistical model to generate estimates of the average target scattering 
matrix parameters. 

2 POLARIMETRIC TARGET DESCRIPTORS 
 
2.1 TARGET VECTOR FOR BACKSCATTER PROBLEMS. 
 
Radar Polarimetry (Polar: polarization Metry: measure) is the science of acquiring, processing and analysing 
the polarization state of an electromagnetic field. The polarization information contained in the waves 
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backscattered from a given medium is highly related to its geometrical structure and orientation as well as to 
its geophysical properties such as humidity, roughness and conductivity of soils, . . . . . 
Radar Polarimetry deals with the full vector nature of polarized electromagnetic waves, and when the wave 
passes through a medium of changing index of refraction, or when it strikes an object or a scattering surface 
and it is reflected; then, characteristic information about the reflectivity, shape and orientation of the 
reflecting body can be obtained from the 2x2 coherent backscattering matrix or Sinclair matrix [Boerner 
1998]. 
An important development in our understanding of how to best extract physical information from the 
classical 2x2 coherent backscattering matrix [S] has been achieved through the construction of system 
vectors [Cloude 1996][Cloude 1997]. We represent this vectorization of a matrix by the vector V(.) built as 
follows : 
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where Trace([A]) is the sum of the diagonal elements of matrix [A] and [ψ] is a set of 2x2 complex basis 
matrices which are constructed as an orthonormal set under an hermitian inner product [Cloude 1986][ 
Cloude 1996]. There exist in the literature different basis sets, but the special set used to generate 3x3 
coherency matrix [T] is based on linear combinations arising from the Pauli matrices, and is given by: 
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where the factor 2  arises from the requirement to keep the norm of the target vector k invariant, equal to 
the Frobenius norm (Span) of the backscattering matrix [S], namely the total power scattered by the target. 
The target vector k has the explicit form shown in (3). 
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With such a vectorization we can then generate a coherency matrix from the outer product of the 

target vector k with its conjugate transpose. For the monostatic case, the 3x3 hermitian coherency matrix [T] 
has the following parameterisation [Cloude 1996]: 
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where A0, B0, B, C, D, E, F, G and H are the « Huynen parameters » identified as phenomenological target 
parameters interrelated in such a way as to reflect directly the physical source of correlation effects in the 
target. These nine parameters are useful for general target analysis without reference to any model, and each 
of them contains real physical target information [Huynen 1970][Pottier 1992]. 
 
The parameters A0, B0+B and B0 - B, called the « target generators », are connected respectively with the 
symmetry, irregularity / double bounce and non-symmetry physical properties in the case of a pure target 
(strong scatterer) [Huynen 1970][Pottier 1992], or related to surface scattering, double-bounce scattering and 
volume scattering in the case of a distributed target (natural media). 
It is thus possible to use these « target generators » to create a color coding for PolSAR images, by assigning 
respectively the color red for VVHH0 SSBB −=+ , green for |S|BB HV0 =− , and blue for VVHH0 SSA2 += .  
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For illustration, the well known NASA/JPL AIRSAR L-Band full polarimetric SAR image of San Francisco 
Bay (1988) and the DLR E-SAR L-Band full polarimetric SAR image of Oberpfaffenhofen (Germany) are 
shown respectively on Figs. 1 and 2. 
 
 

 
Fig. 1 : Pauli color coded image of the San Francisco Bay. 

 

  
Fig. 2: Optical image and Pauli color coded image over Oberpfaffenhofen (Germany) 

 
In these two displays, the polarimetric channel combinations play an important role in separating ocean 
surface or agricultural areas (surface scattering), forests, vegetation and trees (volume scattering), and urban 
areas (double bounce scattering) which composed the different scenes. Called the “Pauli coding 
representation”, this adopted color coding has become today the standard for PolSAR image display. 
 
There exists in the literature a second basis sets, used to generate the 3x3 covariance matrix [C] and is based 
on a lexicographic combinations of the elements of the Sinclair matrix and is given by [Cloude 1996][Cloude 
1997]: 
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where the factor 2  arises from the requirement to keep the norm of the target vector Ω invariant, equal to 
the Frobenius norm (Span) of the backscattering matrix [S], namely the total power scattered by the target. 
The target vector Ω has the explicit form: 
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With such a vectorization we can then generate a covariance matrix from the outer product of the target 
vector Ω with its conjugate transpose. For the monostatic case, the 3x3 hermitian covariance matrix [C] has 
the following parameterisation [Cloude 1996][Cloude 1997]: 
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which can be also expressed in a well-known form given by : 
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The two target vectors k and Ω are linked together with a unitary transformation which is given by : 
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where [U3] is a special unitary SU(3) matrix. It follows the relation between the coherency matrix [T] and the 
covariance matrix [C]: 
 

[ ] [ ][ ][ ]T U C U= −
3 3

1                                                                  (13) 
 
2.2 ELLIPTICAL POLARISATION BASIS CHANGEMENT OPERATION 
 
In the case of the Sinclair matrix or back-scattering matrix, the elliptical polarisation basis changement 
operator is given by the following unitary congruence (unitary con-similarity) transformation [Boerner 
1998]: 
 

[ ] ( )[ ] [ ] ( )[ ]ντφντφ ,,,, 22 USUS T=′                                                     (14) 
 
where the matrix [U2] is given by : 
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where the ν, φ, τ parameters correspond to the three geometric parameters of the polarisation ellipse 
described by the first or principal Jones vector of the new basis. 
 
The matrix [U2] belongs to the SU(2) – Special Unitary 2x2 matrix group constructed from the classical 
unitary matrices Pauli group given by : 
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where the matrices verify  and ∗=− T

ii σσ 1 1)det( =iσ . 
The group of the special unitary matrices (SU(2)) is defined by [Huynen 1970]: 
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These matrices verify the following properties: 
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This special unitary elliptical basis changement matrix can also be described using the parameters ρ and ξ 
which correspond to the polarisation ratio of this first or principal Jones vector of the new basis, and are 
given by : 
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The matrix [U2] is thus given by : 
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In the case of the 3x3 coherency matrix [T], the elliptical polarisation basis changement operator is given by : 
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where the matrix [U3T] is given by : 
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where the ν, φ, τ parameters correspond to the three geometric parameters of the polarisation ellipse 
described by the first or principal Jones vector of the new basis. 
The matrix [U3T] belongs to the SU(3) – Special Unitary 3x3 matrix group. Unfortunately it does not exist 
any direct mathematical link between the SU(2) group matrices and the SU(3) group matrices. To derive the 
SU(3) group matrices, we have to deal with the elliptical polarisation basis changement operation, and 
identify for each SU(2) matrix, its equivalent into the SU(3) group. After some derivations, it follows: 
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This special unitary elliptical basis changement matrix can also be described using the parameters ρ and ξ 
which correspond to the polarisation ratio of this first or principal Jones vector of the new basis, and the 
matrix [U3T] is thus given by : 
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In the case of the 3x3 covariance matrix [C], the elliptical polarisation basis changement operator is given 
by : 
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The SU(3) unitary transformation group for the covariance matrix is obtained from the SU(3) unitary 
transformation group for the coherency matrix with: 
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Expressed in function of the polarisation ratio parameters (ρ and ξ ) the special unitary elliptical basis 
changement matrix  [U3C] can also be written following: 
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2.3 POLARIMETRIC SAR DATA STATISTICS 
 
A polarimetric radar measures the complete scattering matrix [S] of a medium at a given incidence angle and 
for a given frequency. This scattering matrix with complex elements can be expressed in a vector form, 
following : 
 

[ ]X S S SHH HV VV

T
= 2                                                         (37) 

 
where the factor 2  arises from the requirement to keep the norm of the target vector X an invariant, equal 
to the Frobenius norm (Span) of the backscattering matrix [S], namely the total power scattered by the target.  
When the radar illuminates an area of a random surface of many elementary scatterers, the one-look 
scattering vector X can be modeled as having a multivariate complex Gaussian probability density function 
[Lee 1999b], with : 
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where [C]=E(X XT*)is the hermitian covariance matrix of the scattering vector X. 
As the target vector k is constructed from a linear combination of the elements of the scattering vector X, 
following : 
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the elements of the target vector k are considered as having the same complex Gaussian distribution than the 
elements of the scattering vector X.  
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POLSAR data are frequently multi-look processed for speckle reduction, or data compression. The relative 
polarimetric information is thus contained in the expected value of the coherency matrix <[T] > representing 
the spatial-averaged distributed target given by : 
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= =
∑1 1
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* ∑                                              (40) 

 
where [Ti] is a single-look coherency matrix of the ith pixel. 
It has been shown in [Lee 1999b] that the averaged coherency matrix <[T]> has a complex Wishart 
distribution. The probability density function is given by : 
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where [Tm] is global coherency matrix with [Tm] = E(k kT*), L is the number of look and p the dimension of 
the target vector k, with p=3 for the reciprocal case (SHV=SVH) and p=4 for the non-reciprocal case.  
The distribution functions for dual polarization (HH, VH), (HV, VV) or (HH, VV) can be derived from this 
complex Wishart distribution. For example, if only complex HH and VV are available, p=2, and for single 
polarization, p=1, which reduces (9) to the Chi-square distribution with 2L degree of freedom.  
For the dual polarization case without phase difference information (|HH|, |VV|), the probability density 
function has been derived [Lee 1994a]. Letting >=< 2

HH1 SR and >=< 2
VV2 SR , we have: 
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where  is the modified Bessel function of the nth order,( )nI [ ]111 REC =  and C .  [ ]222 RE=
 

3 SPECKLE FILTERING 
 
3.1 NEED FOR SPECKLE FILTERING 
 
Unlike optical remote sensing images, characterized by very neat and uniform features, SAR images are 
affected by speckle [Goze 1993], [Lee 1980], [Lee 1981a], [Lee 1981b], [Lee 1983], [Lee 1986a], [Lee 
1986b], [Lee 1994], [Lee 1997], [Lopes 1990], [Lopes 1993], [Touzi 1994]. Speckle confers to SAR images 
a granular aspect with random spatial variations. Fig. 3 shows an example of single polarization speckled 
SAR images. 
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Fig. 3: Single-look 

2
11S  (top) and 

2
12S (bottom)images 

 
The intensity images displayed in Fig. 3 show a poor contrast, as well as a random aspect, that reduce the 
possibilities of visual interpretation and analysis of the scene under consideration. 
The discrimination of different natural media by comparing intensity to a fixed threshold leads, in general to 
numerous errors due to the high variability of SAR speckled response. Speckle phenomenon also affects the 
phase of scattering coefficients and corrupts polarimetric information. 
The image of shown in Fig. 4 indicates that the absolute phase of a scattering coefficient is highly 
random and does not contain evident information. Speckle does not affect similarly different polarimetric 
channels, as shown in the  between channel relative phase image,  and in the color coded 

image, built from the three polarimetric channel intensities, 

)( 11SArg
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2211SSArg
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Fig. 4:  (top) and  (middle) images.  )( 11SArg )( *

2211SSArg

Color coded image 
2

22
2

12
2

11 ,, SBSGSR ===  (bottom) 
 
Speckle corrupts polarimetric observables (phase and intensity) in an important way. Specific procedures 
have to be used to retrieve relevant polarimetric information and to reduce the randomness of the acquired 
signals. 
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3.2 SIMPLE SPECKLE MODEL 
 

3.2.1 SINGLE-POLARIZATION MULTIPLICATIVE SPECKLE MODEL 
 
Speckle confers a random aspect to SAR images, but may not be considered as a simple noise. It is, in fact, 
tightly related to SAR measurement principle. [Goze 1993], [Lee 1980], [Lee 1981a], [Lee 1981b], [Lee 
1983], [Lee 1986a], [Lee 1986b], [Lee 1994], [Lee 1997], [Lopes 1990], [Lopes 1993], [Touzi 1994]. 
Synthesized SAR data may be considered as the result of the integration of a scene coherent response within 
each resolution cell, resulting from the convolution of the SAR impulse response with the coherent 
contribution of each elementary scatterer, as illustrated in Fig. 5. As the number of contributing scatterers, 
within a resolution cell, tends to be large (it is the case for common resolution SAR measurements), the 
resulting integrated response is random in phase and amplitude and is shown to follow, over homogeneous 
areas, a Normal distribution. 
 

 

 

 Im

Re
1E

iE

Im

Re
1E

iE

 
Fig. 5: Principle of coherent integration 
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A speckled response is usually represented under the form of a simple product model: nxy .=  where 

represents a complex speckled scattering coefficient, y x  the original unspeckled scattering coefficient and 
 the multiplicative speckle contribution. n

The speckle term, n  is composed of independent real and imaginary parts, following both real centered 
Normal distribution . The corresponding speckled intensity, )2/1,0(CN Y , is  
 

∗

∗∗∗

=⇒

==

nnXY
nnxxyyY

                                                               (43) 

Over homogeneous areas, X  is considered to be constant and the speckled intensity follows an exponential 
probability density function  

X
Y

eXYp
−−= 1)(                                                                       (44) 

Its first two moments are given by: 
 

XnnEXYE == ∗ )()(   with:                     (45) 22 )()( XnnVarXYVar == ∗

 

3.2.2 POLARIMETRIC MULTIPLICATIVE SPECKLE MODEL 
 
This speckle model may be extended to the polarimetric case by considering that polarimetric channels are 
affected by independent multiplicative speckle components : 
 

4 - 10 RTO-EN-SET-081 

 

 

Advanced Concepts in Polarimetry – Part 1  



















=



















⇒































=

















∗

∗

∗

)(
)(
)(

222222

121212

111111

2
22

2
12

2
11

22

12

11

22

12

11

22

12

11

nnX
nnX
nnX

S
S
S

n
n
n

x
x

x

S
S
S

                              (46) 

 
One may note that the multiplicative assumption is in general not valid to model speckled correlation terms. 
 
3.3 PRINCIPLE OF SCALAR SPECKLE FILTERING 
 

3.3.1 INCOHERENT AVERAGING 
 
As presented in the former paragraph, a speckled intensity, Y , may be considered as a random variable 
whose mean value equals the unspeckled intensity, X , but affected by a large variance. 
The principle of speckle filtering consist in reducing the variance of Y in order to improve the estimate of its 
mean. The sample mean, Y , is defined as the empirical average of L independent realizations of a speckled 
intensity as follows: 

∑
=

=
L

i
iY

L
Y

1

1
                                                                        (47) 

 
It can be shown that, over homogeneous areas, this estimate of X  follows a Gamma density function: 
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1

                                                            (48) 

 
and has the following two first moments  
 

XYE =)(  with: LXY /)( 2=Var                                                  (49) 
 
It is possible to observe from (49) that as the number of independent samples, L, reduces to 1 the variance of 
the estimate intensity increases, whereas incoherent averaging over L independent realizations permits to 
reduce the variance of a speckled intensity in a significant way. The quantity  is called the 
Equivalent Number of Looks (ENL) and is a measure of speckle importance. 
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Fig. 6: Occurrence of single-look of intensity moments over a homogeneous areas 
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The occurrence plot displayed in Fig. 6 clearly shows that the standard deviation and the mean of sampled 
intensities are linearly related over homogeneous areas. The slope of this linear relation is L and equals 1 
in the case of single-look data sets. 
 

3.3.2 BOXCAR FILTER 
 
The boxcar filter is a direct application of the incoherent averaging described by (47) to the case of an image. 
Filtered intensity estimates, jiX ,

~
, are constructed by computing the sample mean over each pixel 

neighborhood, defined by a sliding window of )( ww NN × pixels. 
 

∑ ∑
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w
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N
YX                                             (50) 

 
where the subscripts i and j correspond to the considered pixel row and column index respectively. Fig. 7 
shows an intensity image obtained using a (7×7) boxcar filter. This images shows enhanced contrast and 
lower random aspect. 
 

 

 
Fig. 7: 

2
11S filtered image using a boxcar filter 

 
As it can be seen in Fig. 7, the boxcar filter is characterized by two main limitations : 

• sharp edges are generally blurred 
• point scatterers are over filtered and transformed to spread targets 

 
Solutions to these limitations are offered by the refined Lee filter. 
 

3.3.3 J.S. LEE ADAPTIVE FILTER 
 
J. S. Lee's filter determines the unspeckled intensity estimate that minimizes a mean squared error [Lee 
1980], [Lee 1981a], [Lee 1981b], [Lee 1983], [Lee 1986a], [Lee 1986b], [Lee 1994]: 
 

2~ XX −                                                                                (51) 

 
This MMSE filter is based on a linearized speckle model leading to the following estimate expression : 
 

( )
ww NN

YYkYX −+=~
                                                                   (52) 

 
where k is an adaptive filtering coefficient, based on local statistics, given by : 
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with 
Ln
12 =σ  the a priori speckle variance. Over homogeneous areas, 00)var( =⇒= kX  and 

wN
YX =~

, whereas over point targets and highly heterogeneous areas, YX =⇒=k ~1 and the pixel 

intensity remains unaffected by the filtering procedure.  
In order to reduce the sensitivity of the adaptive filtering coefficient, , to isolated heterogeneities, this filter 
uses directional masks to determine the most homogeneous part of the sliding window where local statistics 
have to be estimated. This modification permits to preserve relatively sharp edges. [Lee 1994], [Lee 1997]. 

k

 
 

0

1

0

1

 
Fig. 8: Examples of directional masks 

 
The Lee filter results displayed in Fig. 9 demonstrate the effectiveness of this adaptive filtering approach 
 

 

 
Fig. 9: 

2
11S filtered image using a (7×7) Lee filter 

 
3.4 EXTENSION TO THE POLARIMETRIC CASE 
 
Speckle filtering is based on incoherent averaging and requires to handle second order representations. The 
intensity information used in the scalar case has to be extended to the vector case when dealing with two or 
more polarization channels in order to take into account the different intensities as well as the cross-
correlation related information. A simple way to build an incoherent polarimetric representation consists in 
vectorizing a scattering matrix to create a target vector and computing the corresponding (3×3) covariance 
matrix, [  or the (3×3) coherency matrix, [ . ]3C ]3T
 

3.4.1 POLARIMETRIC BOXCAR FILTER 
 
The extension of the boxcar filter to the polarimetric case is straightforward. The estimated covariance 
matrix is given by : 
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where the subscripts i and j correspond to the considered pixel row and column index respectively. 
 

3.4.2 J. S. LEE POLARIMETRIC FILTER 
 
J. S. Lee proposed to estimate the unspeckled covariance matrix according to the following expression:  
 

( )][][][]~[ CCkCC −+=                                                           (55) 
 
where remains a scalar coefficient computed from the span statistics, spank 332211 CCC ++= .  
This approximation is allows to filter polarimetric data in a fast and simple way and avoids additional 
coupling (or cross-talk) between the polarimetric channels. Fig. 10 shows improved color coded images 
processed through the boxcar and J. S. Lee filters. 
 

 

 
 
 

 
Fig. 10 : Color-coded, 

2
22

2
12

2
11 ,, SBSGSR === , 

filtered image using a (7×7) boxcar (top) Lee's filter (bottom) 
 
3.5 CONSEQUENCES OF POLARIMETRIC SPECKLE FILTERING 
 
It was seen in former paragraphs that it is necessary to reduce polarimetric variables random aspect by 
speckle filtering prior to any interpretation of polarimetric information. The incoherent averaging of the 
coherency [T] or covariance [C] matrices has an important impact on their polarimetric properties. Speckle 
filtering may cause a loss of polarimetric information by destroying the relation between and [T] or [C] 
matrices.  
A coherency matrix is fully defined by 9 real coefficients: its three diagonal terms and three complex 
correlation coefficients. In the case of a single look coherency matrix, all three correlation coefficients have 
unitary modulus and one of their phase may be obtained by a linear combination of the remaining two, 
leaving 5 degrees of freedom. A relative scattering matrix [  and single-look [T] or [C] matrices may be 
related in a unique way as shown in the following example : 

]relS
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with jjiiij CCm = , and : 
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The scattering mechanism may then be interpreted by comparing [ ]relS  to canonical examples. After speckle 
filtering, this may not be true anymore. In a general case, the modulus of correlation coefficients is inferior to 
one and the phase terms are linearly independent.  
 

222*
klijklij SSSS ≤  and ( ) ( )**

klijklij SSArgSSArg ≠                         (58) 

 
In such a case, the coherency matrix is said to be distributed and cannot be related to a coherent scattering 
matrix. 
 

 

 
 

 

 
Fig. 11: Argument (top) and modulus (bottom) of  

2
22

2
11

*
2211 / SSSS after application of a Lee filter 

 
The correlation coefficient displayed in Fig. 11 shows a varying modulus over the selected scene, indicating 
that the degree of correlation might be related to the nature of the scattering medium. The additional 
information contained in the cross-correlation terms will be exploited by incoherent decomposition 
theorems to extract even more characteristics from polarimetric data sets. 
 

4 POLARIMETRIC TARGET DECOMPOSITION THEOREMS 
 
There is currently a great deal of interest in the use of polarimetry for radar remote sensing. In this context, 
an important objective is to extract physical information from the observed scattering of microwaves by 
surface and volume structures. The most important observable measured by such radar systems is the 3x3 
coherency matrix [T]. This matrix accounts for local variations in the scattering matrix and is the lowest 
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order operator suitable to extract polarimetric parameters for distributed scatterers in the presence of additive 
(system) and/or multiplicative (speckle) noise. 
 
Many targets of interest in radar remote sensing require a multivariate statistical description due to the 
combination of coherent speckle noise and random vector scattering effects from surface and volume. For 
such targets, it is of interest to generate the concept of an average or dominant scattering mechanism for the 
purposes of classification or inversion of scattering data. This averaging process leads to the concept of the 
« distributed target » which has its own structure, in opposition to the stationary target or « pure single 
target » [Huynen 1970][Pottier 1992]. 
Target Decomposition theorems are aimed at providing such an interpretation based on sensible physical 
constraints such as the average target being invariant to changes in wave polarization basis. 
Target Decomposition theorems were first formalized by J.R. Huynen but have their roots in the work of 
Chandrasekhar on light scattering by small anisotropic particles. Since this original work, there have been 
many other proposed decompositions. We classify four main types of theorem:  
 

1. Those employing coherent decomposition of the scattering matrix (Krogager, Cameron). 
2. Those based on the dichotomy of the Kennaugh matrix (Huynen, Barnes). 
3. Those based on a “model-based” decomposition of the covariance or the coherency matrix 

(Freeman and Durden, Dong). 
4. Those using an eigenvector / eigenvalues analysis of the covariance or coherency matrix 

(Cloude, VanZyl, Cloude and Pottier). 
 
A complete description of all these different Polarimetric Target Decomposition can be found in [Cloude 
1996], and we focus here on the H / A / α decomposition theorem which will be used further in the 
polarimetric classifications. 
 
4.1 THE H / A / α POLARIMETRIC DECOMPOSITION THEOREM 
 
In 1997, S.R. Cloude  and E. Pottier proposed a method for extracting average parameters from experimental 
data using a smoothing algorithm based on second order statistics [Cloude 1997]. This method does not rely 
on the assumption of a particular underlying statistical distribution and so is free of the physical constraints 
imposed by such multivariate models. An eigenvector analysis of the 3x3 coherency matrix [T] is used since 
it provides a basis invariant description of the scatterer and also provides a decomposition into types of 
scattering process (the eigenvectors) and their relative magnitudes (the eigenvalues). This original method, 
based on an eigenvalue analysis of the coherency matrix, employs a 3-level Bernoulli statistical model to 
generate estimates of the average target scattering matrix parameters. This alternative statistical model sets 
out with the assumption that there is always a dominant 'average' scattering mechanism in each cell and then 
undertakes the task of finding the parameters of this average component [Cloude 1997]. 
 

4.1.1 EIGENVECTOR-BASED DECOMPOSITION. 
 
The instantaneous (single pixel) target return from a spatially extended target can be characterized either by 
its complex scattering matrix [S] which relates to received spatial-voltage, or by its 3x3 coherency matrix [T] 
which relates to spatial-power. In the case of spatial-averaging, it is customary to consider the expected value 
of the coherency matrix <[T]> as representing the averaged distributed target, as : 
 

[ ] [ ]T
N

k k
N

Ti i
T

i

N

i
i

N

= ⋅ =
= =
∑1 1

1 1

* ∑                                                       (59) 

 
From this estimate, the eigenvectors and eigenvalues of the 3x3 hermitian coherency matrix <[T]> can be 
calculated to generate a diagonal form of the coherency matrix which can be physically interpreted as 
statistical independence between a set of target vectors [Cloude 1992][ Cloude 1996]. The coherency matrix 
<[T]> can be written in the form of: 
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[ ] [ ][ ][ ] 1

33 UUT −= Σ                                                             (60) 
 
where [ ]Σ  is a 3x3 diagonal matrix with nonnegative real elements, and [ ] [ ]3213 uuuU =  is a 3x3 
unitary matrix of the SU(3) group, where u1, u2, and u3 are the three unit orthogonal eigenvectors. 
By finding the eigenvectors of the 3x3 hermitian coherency matrix <[T]>, such a set of 3 uncorrelated targets 
can be obtained and hence a simple statistical model can be constructed, consisting of the expansion of <[T]> 
into the sum of 3 independent targets, each of which, represented by a single scattering matrix. This 
decomposition can be written following: 

 

[ ] [ ] ∑∑
=

=

=

=

⋅==
3i

1i

T*
iii

3i

1i
ii uuTT λλ                                                       (61) 

 
where the real numbers λi are the eigenvalues of <[T]> and represent statistical weights for the three 
normalized component targets [Ti] [Cloude 1992]. 
 
If only one eigenvalue is nonzero then the coherency matrix <[T]> corresponds to a pure target and can be 
related to a single scattering matrix. On the other hand, if all eigenvalues are equal, the coherency matrix 
<[T]> is composed of three orthogonal scattering mechanisms with equal amplitudes, the target is said 
random and there is no correlated polarized structure at all.  
Between these two extrema, there exists the case of partial targets and where the coherency matrix <[T]> has 
non-zero and non-equal eigenvalues. The analysis of its polarimetric properties requires a study of the 
eigenvalues distribution as well as a characterization of each scattering mechanism of the expansion. 

 
To introduce the degree of statistical disorder of each target, the entropy (H) is defined in the Von Neumann 
sense from the logarithmic sum of eigenvalues of <[T]> [Cloude 1996][Cloude 1997], as: 
 

( )∑
=

=

−=
3i

1i
i3i PlogPH                                                             (62) 

 
where Pi are the probabilities obtained from the eigenvalues λi of <[T]> with: 
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3                                                                        (63) 

If the entropy H is low then the system may be considered as weakly depolarizing and the dominant target 
scattering matrix component can be extracted as the eigenvector corresponding to the largest eigenvalue and 
ignore the other eigenvector components. 
If the entropy H is high then the target is depolarizing and we can no longer consider it as having a single 
equivalent scattering matrix. The full eigenvalue spectrum must be considered.  
Further, as the entropy H increases, the number of distinguishable classes identifiable from polarimetric 
observations is reduced. In the limit case, when H=1, the polarization information becomes zero and the 
target scattering is truly a random noise process . 
 
While the entropy is a useful scalar descriptor of the randomness of the scattering problem, it is not a unique 
function of the eigenvalue ratios. Hence, another eigenvalue parameter defined as the anisotropy A can be 
introduced, with : 
 

A =
−
+

λ λ
λ λ

2

2 3

3                                                                     (64) 
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When A=0 the second and third eigenvalues are equal. The anisotropy may reach such a value for a 
dominant scattering mechanism, where the second and third eigenvalues are close to zero, or for the case of a 
random scattering type where the three eigenvalues are equal. 
 
The condition for <[T]> to have such an equivalent scattering matrix [S] is for both the target entropy H and 
the anisotropy A to be equal to zero, which corresponds to a single nonzero eigenvalue (λ1) [Cloude 
1992][Cloude 1996]. In this case the coherency matrix <[T]> has rank r=1, and can be expressed as the outer 
product of a single target vector k1 with: 

 
[ ]T k k u uT= ⋅ = ⋅1 1 1 1 1

* λ T*

)0

                                                         (65) 
 
where  is equal to the Frobenius norm (Span) of the corresponding scattering matrix, and 
where the corresponding unit target vector is expressed as follows : 
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It is interesting to note that the modulus of the three components of the unit target vector are directly function 
of the three « Huynen target generators ». 
 
Without using ground truth measurements, this polarimetric parameterisation of the unit target vector u 
involves the fit of a combination of three simple scattering mechanisms : surface scattering, dihedral 
scattering and volume scattering, which are characterized from the three components (target generators) of 
the unit target vector such as: 
   Surface scattering:      A0    >>  B0 +B  ,  B0  - B 
   Dihedral scattering: B0  + B  >>  A0  ,  B0 - B 
   Volume scattering: B0  - B   >>  A0  ,  B0+B 
 

4.1.2 PROBABILISTIC MODEL FOR RANDOM MEDIA SCATTERING. 
 
In previous publications [Cloude 1995] [Cloude 1996] [Cloude 1997], a parameterisation of the eigenvectors 
of the 3x3 coherency matrix [T] has been introduced for the case of scattering medium which does not have 
azimuthal symmetry [Nghiem 1992], and which takes the form shown in (67). 

 

u e j e j T

= 



cos sin cos sin sinα α β δ α β γ                                      (67) 

 
It follows a revised parameterisation of the coherency matrix [Cloude 1997], as : 
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          (69) 

 
The parameterisation of a 3x3 unitary matrix [U3] in terms of column vectors with different parameters α1 β1 
etc... is made so as to enable a probabilistic interpretation of the scattering process. In general, the columns 
of the 3x3 unitary matrix are not only unitary but mutually orthogonal. This means that in practice α1 α2 and 
α3 are not independent. 
In this case a statistical model of the scatterer is considered as a 3 symbol Bernoulli process i.e. the target is 
modeled as the sum of three [S] matrices, represented by the columns of [U3] in (69), occuring with 
probabilities Pi ,given from (15) by the normalized eigenvalues so that P1 + P2 + P3 = 1 [Cloude 1997]. 
In this way for example, the parameter α follows a random sequence: 
 

{ }α α α α α α α α α α= 1 2 3 2 1 2 3 1 1 K                                                    (70) 
 
and the best estimate of this parameter is given by the mean of this sequence, easily evaluated as [Cloude 
1997] : 

α α α α= + +P P P1 1 2 2 3 3                                                           (71) 
 
In this way, the mean parameters of the dominant scattering mechanism are extracted from the 3x3 
coherency matrix as a mean target vector u0, such that: 
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where the parameters α β δ and γ are defined in (19), and where φ is physically equivalent to an absolute 
phase. 
 

4.1.3 THE ROLL INVARIANCE PROPERTY. 
 
One of the most important property in Radar Polarimetry concerns the roll invariance. The effect of rotation 
around the radar line of sight [Cloude 1996] can be generated as: 
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where [  is the unitary similarity rotation matrix, given by: ]
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According to the eigenvector-based decomposition approach, the coherency matrix can be written in the 
form of: 
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(76) 
 
where  is the same 3x3 diagonal matrix with nonnegative real elements. [ ]Σ [ ] [ ]′ =U v v v3 1 2 3  is the 
new 3x3 unitary matrix of the SU(3) group, where v1, v2, and v3 are the new three unit orthogonal 
eigenvectors.  
Following the parameterisation of the 3x3 unitary matrix [U’3], it can be seen that the three parameters α1 α2 
and α3 remain invariant, as the three eigenvalues (λ1 λ2 λ3).  
It follows that the mean parameter α, and the two important scalar functions of the eigenvalues, the entropy 
H and the anisotropy A, are three roll-invariant parameters. 
Among the mean parameters (α, β, δ and γ) of the dominant scattering mechanism which can be extracted 
from the 3x3 coherency matrix, it is now clear from the above analysis, that for random media problems, the 
main parameter for identifying the dominant scattering mechanism is α. The three others parameters (β, δ 
and γ) can be used to define the target polarisation orientation angle [Pottier 1998][Pottier 1999][Schuler 
1999]. 
In previous publication [Cloude 1997], it has been shown that the useful range of the parameter α 
corresponds to a continuous change from surface scattering in the geometrical optics limit (α=0°) through 
surface scattering under physical optics to the Bragg surface model, encompassing dipole scattering or single 
scattering by a cloud of anisotropic particles (α=45°), moving into double bounce scattering mechanisms 
between two dielectric surfaces and finally reaching dihedral scatter from metallic surfaces (α=90°). 
The α parameter estimate is related directly to underlying average physical scattering mechanism, and hence 
may be used to associate observables with physical properties of the medium [Cloude 1997]. Fig. 12 shows 
these three roll-invariant parameters : H, A and α. 

 

   
   

0                       0.5                        1 

Entropy H 
0                       0.5                         1 

Anisotropy A 
0°                     45°                      90° 

α parameter 
Fig. 12 : Roll-invariant parameters : H, A and α 
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The figure Fig. 12c corresponding to the α parameter image shows that low value occurs over the ocean 
region, indicative of dominant single scattering (α = 0°). Urban area and parkland areas consist of medium 
and high α parameter values (45°< α <90°). 
The figure Fig. 12a corresponding to the entropy image shows that low entropy scattering occurs over the 
ocean (scattering by a slightly rough surface). High entropy occurs over the parkland areas. At this resolution 
, the urban area consists of a mixture of low and high entropy processes, which are due to the different 
street/building classes which are aligned with the radar look direction, or aligned somewhat off boresight, or 
45° aligned. 
The figure Fig. 12b corresponding to the anisotropy image shows that low anisotropy scattering occurs both 
over the ocean region and parkland areas. The fact that the second and third eigenvalues are equal, 
corresponds either to a single dominant scattering mechanism or to a random scattering type. The urban area 
and the coastal sea consist of a mixture of medium and high anisotropy (presence of a second mechanism). 
Although we can already identify several clear classes based on entropy alone, further information can be 
gleaned from the angle α and from the anisotropy A, which can distinguish between the high entropy park 
and urban environments since the latter contains (moderate to high entropy) dihedral scattering. 
 

4.1.4 THE THREE-DIMENSIONAL H / A / α CLASSIFICATION SPACE. 
 
In previous publication [Cloude 1997], an unsupervised classification scheme has been introduced, based on 
the use of the two-dimensional H / α classification plane, where all random scattering mechanisms can be 
represented. The key idea is that entropy arises as a natural measure of the inherent reversibility of the 
scattering data and that the alpha angle (α) can be used to identify the underlying average scattering 
mechanisms. 
The H / α classification plane is sub-divided into nine basic zones characteristic of classes of different 
scattering behavior, in order to separate the data into basic scattering mechanisms, as shown on Fig. 13a. The 
location of the boundaries within the feasible combinations of H and α values is arbitrary and generically, 
i.e. based on the general properties of the scattering mechanisms. There is of course some degree of 
arbitrariness on the setting of these boundaries which are not dependent on a particular data set. This 
segmentation of the H / α classification plane is offered merely to illustrate the unsupervised classification 
strategy and to emphasize the geometrical segmentation of physical scattering processes. 
Complete details of the physical scattering characteristics of each of the nine zones can be found in [Cloude 
1997][Pottier 2000]. 
The distribution of the San Francisco bay POLSAR data on the H / α classification plane is shown on Fig. 
13b. 
 

 

 

Fig. 13a : The H / α classification plane.  Fig. 13b : Polsar data distribution in the H / α 
classification plane. 
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Inherent of the spatial averaging, the entropy H may increase, and the number of distinguishable classes 
identifiable from polarimetric observations is reduced. For example, the feasible region of the H / α 
classification plane is rapidly shrinking for high values of entropy (H=0.9), where α parameter reaches the 
limited value of 60°. 
 
A high entropy, H=0.9, may correspond to two limit types of scattering process with associated eigenvalues 
spectra given, for example, by : λ1=1, λ2=0.4, λ3=0.4  or by : λ1=1, λ2=1, λ3=0.3.  
To distinguish between these two different types of scattering process, it is necessary to introduce the 
anisotropy information, which takes the corresponding values A=0 and A=0.54 for the two previous 
examples. 
 
In order to extend the classification scheme and to improve the capability to distinguish different types of 
scattering process, it is proposed to use some combinations between entropy and anisotropy information, as 
shown on Fig. 14. The .* operation represents the element by element multiplication of two matrices. 
 
The examination of the different figures corresponding to the different combinations between entropy and 
anisotropy images leads to the following remarks : 
 
 1) - The (1-H)(1-A) image corresponds to the presence of a single dominant scattering process (low 
entropy and low anisotropy with λ2 ≈ λ3 ≈ 0 ). 
 2) - The H(1-A) image characterizes a random scattering process (high entropy and low anisotropy 
with λ2 ≈ λ3 ≈ λ1) 
 3) - The HA image relates to the presence of two scattering mechanisms with the same probability 
(high entropy and high anisotropy with λ3 ≈ 0). 
 4) - The (1-H)A image corresponds to the presence of two scattering mechanisms with a dominant 
process (low to medium entropy) and a second one with medium probability (high anisotropy with λ3 ≈ 0). 
 
 
These remarks are confirmed by the analysis of the distribution of the San-Francisco bay POLSAR data in 
the extended and complemented three-dimensional H / A / α classification space, as shown on Fig. 6 This 
representation shows that it is possible to discriminate new classes using the anisotropy value. 
 
For example, it is now possible to notice that there exists in the « Low Entropy Surface Scattering » area 
(Z9) a second class associated with a high anisotropy value and which corresponds to the presence of a 
second physical mechanism which is not negligible. 
Identical remarks can be made concerning the « Medium Entropy Vegetation Scattering » area (Z5) and the 
« Medium Entropy Multiple Scattering » area (Z4). Due to the spread of the POLSAR data along the 
anisotropy axis, it is now possible to improve the capability to distinguish different types of scattering 
process which have quite the same high entropy value:  
 - High entropy and low anisotropy correspond to random scattering. 
 - High entropy and high anisotropy correspond to the presence of two scattering mechanisms with 
the same probability. 
 
From the analysis of the different images shown on Fig. 14 and from the distribution of the San-Francisco 
bay POLSAR data in the H / A / α classification space shown on Fig. 15., we can conclude that the 
anisotropy has to be considered now as a key parameter in the polarimetric analysis and/or inversion of 
POLSAR data. 
The information contained in these three roll-invariant parameters extracted from the local estimate of the 
3x3 hermitian coherency matrix <[T]>, corresponds to the type of scattering process which occurs within the 
pixel to be classified (combination of entropy H and anisotropy A) and to the corresponding physical 
scattering mechanism (α parameter). 
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Fig. 14 : Combinations between entropy and anisotropy images. 
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Fig. 15 : Distribution of the San-Francisco bay POLSAR data in the  
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